

Joseph Ndagatsa Mamman et al.,| | 74

CEDTECH International Journal of Science & Advancement in Bioconservation
Volume 5, Number 3, September 2024
http://www.cedtechjournals.org
ISSN: 2756-4614

CONFIGURING HYPERLEDGER FABRIC FOR HIGH-
THROUGHPUT ENTERPRISE APPLICATIONS

Joseph Ndagatsa Mamman1 ; Muhammad Bashir Abdullahi 2; John Kolo Alhassan3; Opeyemi

Aderike Abisoye4 and Oluwaseun Adeniyi Ojerinde
Department of Computer Science,

Federal University of Technology, Minna, Nigeria

Email: mammanjoseph1@gmail.com1,el.bashir02@futminna.edu.ng2, jkalhassan@futminna.edu.ng3

,o.abisoye@futminna.edu.ng4, o.ojerinde@futminna.edu.ng

ABSTRACT

Blockchain technology, particularly Hyperledger Fabric (HLF), has become a
key tool for enterprise applications due to its security, scalability, and flexible
architecture. Unlike public blockchains, HLF operates in permissioned
environments, allowing for fine-grained access control and privacy. However,
optimizing its performance is essential, as inefficient configurations can lead to
reduced throughput, increased latency, and lower transaction success rates. This
study focuses on evaluating the performance of a Hyperledger Fabric network
by adjusting key configuration parameters—block size, batch size, and batch timeout.
The research aims to determine how these adjustments impact critical metrics like
throughput, latency, and transaction success rates, offering valuable insights for
optimizing the platform’s deployment in various enterprise environments. The
performance evaluation was conducted on a controlled network setup, systematically
altering the configuration parameters to assess their effects on the system. Results indicated
that increasing block size and batch size significantly improved throughput, with the
network achieving up to 142.9 transactions per second. These changes, while
slightly increasing latency, maintained high transaction success rates, with a block size
of 14 MB and a batch size of 45 or more achieving 100% success. Similarly, longer
batch timeouts contributed to higher throughput, although they also resulted in
marginally increased latency. The findings suggest that carefully tuning these configuration
parameters can substantially enhance the performance of a Hyperledger Fabric
network, making it more efficient for high-throughput enterprise applications. The
study provides actionable insights for future deployments, ensuring that the system
can meet the demands of enterprise-level blockchain implementations.

Keywords: Hyperledger Fabric, Blockchain, Performance Evaluation,
Throughput, Latency, Transaction Success Rate, Block Size, Batch Size, Batch

Joseph Ndagatsa Mamman et al.,| 75

Configuring Hyperledger Fabric for High-Throughput Enterprise
Applications

timeout, enterprise applications, permissioned blockchain, smart contracts,
network optimization.

INTRODUCTION
Blockchain technology has revolutionized the management of transactions and data
in distributed systems. It is widely recognized for its decentralized structure and
immutable ledger, offering substantial benefits across various industries such as finance,
healthcare, and supply chain management (Alkhodre et al., 2019; Hang et al.,
2020). Among the numerous blockchain platforms, Hyperledger Fabric stands
out due to its modular architecture and permissioned framework, positioning it as a
prime choice for enterprise-level applications that require security, scalability,
and flexibility (Dabbagh et al., 2021a; Rajput et al., 2019). These features allow for the
customization of business logic through the use of smart contracts, while maintaining
strong transaction management capabilities (Androulaki et al., 2018; Guggenberger
et al., 2021). In contrast to public blockchains like Bitcoin and Ethereum,
which function in open, trustless environments (Yusoff et al., 2022), Hyperledger
Fabric is specifically designed for permissioned environments that require fine-
grained access control, privacy, and confidentiality in transactions. Its architecture
supports both modularity and flexibility (Androulaki et al., 2018), allowing
organizations to adapt the platform to their unique use cases while maintaining
control over data and participants. In enterprise blockchain deployments,
performance optimization is crucial to ensuring efficient, scalable, and reliable
operations (Gorenflo et al., 2020). Configuring a blockchain network like
Hyperledger Fabric involves setting parameters such as block size, batch size, and
batch timeout. These parameters directly influence the network's throughput,
latency, and transaction success rate. However, improper tuning of these variables
can lead to inefficiencies, such as high latency or reduced throughput,
impacting the overall performance of the system (Kadhm et al., 2023). To ensure that
Hyperledger Fabric performs optimally for specific use cases, it is essential to
understand the impact of varying these parameters. The goal of this research is to
evaluate the performance of a Hyperledger Fabric network by systematically varying block
size, batch size, and batch timeout. This study focuses on how these configurations
affect key performance metrics, such as throughput (transactions per second),
latency, and transaction success rate. By conducting a detailed performance evaluation,
the research aims to provide insights into the trade-offs between improving
throughput and managing latency, offering valuable data for the optimization
of Hyperledger Fabric in different deployment environments (Gorenflo et al.,
2020). The findings of this study are critical for organizations that plan to deploy
Hyperledger Fabric for enterprise applications. Whether the aim is to
maximize throughput, minimize latency, or ensure a high transaction success

Joseph Ndagatsa Mamman et al., | 76

CEDTECH International Journal of Science &
Advancement in Bioconservation

Volume 5, Number 3, September 2024
http://www.cedtechjournals.org

rate, this research provides a framework for tuning key configuration
parameters to meet specific performance requirements. Moreover, these
results will contribute to future enhancements of Hyperledger Fabric, guiding
further developments in blockchain technology to meet the evolving
demands of industry applications (Nanayakkara et al., 2021; Belov, 2018; Islam,
2021). In this research, Hyperledger Fabric (HLF) is identified as an open-source,
permissioned blockchain platform, developed under the Linux Foundation,
specifically designed to meet the needs of enterprise-level applications (Dabbagh et al.,
2021b). Its permissioned nature enables organizations to exercise control over
network participants and ensure privacy, setting it apart from public blockchains
like Bitcoin and Ethereum, which operate in open environments (Shalaby et
al., 2020). A key innovation in HLF is its Execute-Order-Validate transaction
model, which differentiates it from the conventional Order-Execute model found
in many other blockchain platforms (Alkhodre et al., 2019).

The traditional order-execute model operates by first ordering transactions
through a consensus protocol. Afterward, during the execution phase, each peer
processes the transactions sequentially in the exact same order. This process,
although ensuring uniformity across the network, significantly reduces
performance, as each peer must process all transactions in a block. This sequential
execution leads to higher latency and limits throughput, making the system less
efficient, especially as the network scales (Shalaby et al., 2020). In contrast, the
execute-order-validate model used by Hyperledger Fabric improves
network efficiency by decoupling the execution phase from the ordering
phase. This allows transactions to be executed concurrently by peers, leading to
better overall performance, reduced latency, and increased scalability (Dabbagh
et al., 2021b). Another distinctive feature of Hyperledger Fabric is its support for
general- purpose programming languages such as Java, Go, and Node.js for the
development of smart contracts, referred to as chaincodes within the Fabric ecosystem
(Shalaby et al., 2020). This flexibility contrasts with other blockchain
platforms that follow the order-execute model, where smart contracts are often
required to be written in Domain-Specific Languages (DSLs) to ensure
determinism. These platforms enforce determinism in smart contracts to
prevent inconsistent transaction outcomes, which can occur in a decentralized
environment (Androulaki et al., 2018).

By allowing general-purpose languages, HLF provides developers with a more
versatile and accessible framework for developing business logic, making it a
highly adaptable solution for diverse enterprise use cases.
Overall, Hyperledger Fabric’s architectural innovations—specifically, its execute-

Joseph Ndagatsa Mamman et al.,| 77

Configuring Hyperledger Fabric for High-Throughput Enterprise
Applications

order-validate transaction model and support for general-purpose programming
languages—position it as a powerful blockchain platform tailored to the
performance, security, and flexibility demands of enterprise environments.

METHODOLOGY

Performance Evaluation for Varying Hyperledger Fabric Network Configurations
This research presents a detailed performance evaluation of a Hyperledger Fabric
network, focusing on the impact of varying configurations of block size, batch
size, and batch timeout on key performance metrics. The evaluation was
conducted on an HP laptop featuring a 4th generation Intel Core i5-4200U
processor, operating under Ubuntu 22.04 with 12 GB of RAM. The network
is configured to utilize a majority endorsement policy, with Level DB serving
as the state database and Raft as the ordering mechanism.

Varying Block Size (MB) Configuration

The analysis of the varying block size configuration involves adjustments from 2
MB to 20 MB, incremented by 2 MB as shown in Table 2.1. This aspect of
the evaluation aims to investigate the influence of block size on system
performance. It is anticipated that increasing block size may enhance
throughput by reducing the frequency of block generation. However, larger
blocks could also lead to increased latency if the system requires more time for
processing.

Table 2.1: Varying Block Size Configuration

Configuration
Parameter

Block Size
(MB)

Batch Size Batch
Timeout (s)

Total Transactions

C1 2 10 2 10,000
C2 4 10 2 10,000
C3 6 10 2 10,000
C4 8 10 2 10,000
C5 10 10 2 10,000
C6 12 10 2 10,000
C7 14 10 2 10,000
C8 16 10 2 10,000
C9 18 10 2 10,000
C10 20 10 2 10,000

Joseph Ndagatsa Mamman et al., | 78

CEDTECH International Journal of Science &
Advancement in Bioconservation

Volume 5, Number 3, September 2024
http://www.cedtechjournals.org

Varying Batch Size Configuration

The varying batch size configuration examines transaction batches ranging from 10
to 55 as depicted in Table 2.2. This part of the evaluation seeks to understand
how batch size affects the network's performance metrics. It is expected that
larger batch sizes will improve throughput, as more transactions can be
processed collectively, although there may be a corresponding increase in
latency as transactions are collected into larger batches.

Table 2.2: Varying Batch Size Configuration

Configuration
Parameter

Block Size
(MB)

Batch
Size

Batch
Timeout (s)

Total
Transactions

C1 2 10 2 10,000
C11 2 15 2 10,000
C12 2 20 2 10,000
C13 2 25 2 10,000
C14 2 30 2 10,000
C15 2 35 2 10,000

C16 2 40 2 10,000
C17 2 45 2 10,000
C18 2 50 2 10,000
C19 2 55 2 10,000

Varying Batch Timeout (s) Configuration
In the varying batch timeout configuration, the timeout period is adjusted from 2
seconds to 20 seconds as shown in Table 2.3. This configuration allows for an
exploration of how the length of time transactions are held before being
processed influences overall network performance. A longer batch timeout may
lead to higher throughput and transaction success rates due to greater transaction
accumulation, but it may also result in increased latency as transactions wait longer
to be processed.

Table 2.3: Varying Batch Timeout Configuration

Configuration
Parameter

Block Size
(MB)

Batch
Size

Batch Timeout
(s)

Total
Transactions

C1 2 10 2 10,000
C20 2 10 4 10,000
C21 2 10 6 10,000
C22 2 10 8 10,000
C23 2 10 10 10,000

C24 2 10 12 10,000
C25 2 10 14 10,000

Joseph Ndagatsa Mamman et al.,| 79

Configuring Hyperledger Fabric for High-Throughput Enterprise
Applications

Configuration
Parameter

Block Size
(MB)

Batch
Size

Batch Timeout
(s)

Total
Transactions

C26 2 10 16 10,000
C27 2 10 18 10,000
C28 2 10 20 10,000

These tables present a comprehensive view of the varying configurations for block
size, batch size, and batch timeout, along with a total transaction count for each
configuration. The comprehensive performance evaluation aims to clarify the trade-
offs associated with block size, batch size, and batch timeout configurations in a
Hyperledger Fabric network. By systematically analyzing these parameters, the
study intends to identify optimal settings that maximize throughput while
minimizing latency and maintaining a high transaction success rate. The findings
from this evaluation will offer significant insights into the performance dynamics
of Hyperledger Fabric, aiding in the optimization of future deployments and
configurations for enhanced efficiency and reliability.

Performance Metrics

In evaluating the performance of a Hyperledger Fabric network, several key metrics
are utilized, each defined mathematically to quantify system efficiency and
effectiveness. Below are the primary performance metrics analyzed in this study,
along with their corresponding mathematical equations:

Throughput (Transactions per Second - TPS) Throughput measures the
number of transactions successfully processed by the network in one second. It is
calculated using the formula as shown in equation 2.1

Where:

 Transaction Commit Time: The timestamp indicating when the transaction
is committed.

 Transaction Submission Time: The timestamp indicating when the transaction
is submitted.

 Total Transactions: The total number of transactions submitted.

Transaction Success Rate (%)

The transaction success rate quantifies the percentage of transactions that are

Joseph Ndagatsa Mamman et al., | 80

CEDTECH International Journal of Science &
Advancement in Bioconservation

Volume 5, Number 3, September 2024
http://www.cedtechjournals.org

successfully completed out of the total submitted. It is calculated using equation 2.3
 (%) ݁ݐܴܽ ݏݏ݁ܿܿݑܵ ݊݋݅ݐܿܽݏ݊ܽݎܶ

= Successful Transactions ∗ 100 (2.3)

Total Transactions

Where:

 Successful Transactions is the count of transactions that were completed
successfully.

 Total Transactions is the total number of transactions submitted.

These performance metrics—throughput, latency, and transaction success rate—
are essential in understanding the operational capabilities of the Hyperledger
Fabric network. By evaluating these metrics under varying configurations of
block size, batch size, and batch timeout, this study aims to provide a
comprehensive analysis of the network's performance characteristics. The
inclusion of mathematical equations allows for a precise quantification of
each metric, guiding future enhancements and optimizations.

Performance Evaluation Results

The evaluation of the Hyperledger Fabric network's performance under
different configurations was evaluated using the metrics of Throughput (TPS),
Latency (Seconds), and Transaction Success Rate (%) using equations (2.1),
(2.2), and (2.3). The varying configurations (block size, batch size, and batch
timeout) were plotted against configuration parameters as shown in Figure
3.1 which represents the input values. The goal was to assess how each varying
configuration impacts the network’s ability to handle transactions efficiently and
reliably. These results also help illustrate how varying Block Size, Batch Size, and
Batch Timeout affect system behavior.

Joseph Ndagatsa Mamman et al.,| 81

Configuring Hyperledger Fabric for High-Throughput Enterprise
Applications

Figure 3.1: Configuration Parameters with Varying Configuration

Varying Block Size Configuration (C1 - C10)

Table 3.1 shows the performance evaluation result for Varying Block Size
configuration. The block size was varied while the batch size and batch timeout
were held constant. The analysis reveals a direct relationship between block
size and throughput. As block size increased, throughput rose from 99.5
transactions per second (TPS) at 2 MB to 142.9 TPS at 20 MB. This trend reflects
the efficiency gained when larger blocks are used to batch more transactions
together, reducing the overhead of frequent block creation. Latency showed a
marginal increase, ranging from 1.5 to 2.5 seconds, but remained within
acceptable limits even at higher block sizes. Transaction success rate was
consistently high, reaching 100% at a block size of 14 MB and maintaining that
level for larger block sizes. This indicates that the system is highly reliable,
successfully processing almost all transactions even with larger blocks. These results
suggest that increasing block size is a highly effective way to boost throughput with
minimal impact on latency or transaction success, making it a suitable
strategy for environments prioritizing performance. Figure 3.2, Figure 3.3 and
Figure 3.4 shows the separate plot for Transaction Throughput, Latency and
Transaction success rate for varying block size. The increase in throughput can be
attributed to the system's ability to accumulate and commit a greater number of
transactions in larger blocks before reaching the block size limit, thereby reducing
the frequency of block creation and improving the overall transaction processing
rate.

Joseph Ndagatsa Mamman et al., | 82

CEDTECH International Journal of Science &
Advancement in Bioconservation

Volume 5, Number 3, September 2024
http://www.cedtechjournals.org

Table 3.1: Performance Evaluation Result for Varying Block Size Configuration

Figure 3.2: Transaction Throughput with Varying Block Size

Figure 3.3: Latency with Varying Block Size

Configuration
parameters

Block
Size
(MB)

Batch
Size

Batch
Timeout
(s)

Total
Transactions

Successful
Transactions

Failed
Transactions

Total
Time
(s)

Throughput
(TPS)

Avg
Latency
(s)

Transaction
Success Rate
(%)

C1 2 10 2 10,000 9,950 50 100 99.5 1.5 99.5

C2 4 10 2 10,000 9,980 20 90 111.1 1.7 99.8
C3 6 10 2 10,000 9,970 30 85 117.6 1.9 99.7

C4 8 10 2 10,000 9,985 15 82 121.9 2.0 99.9

C5 10 10 2 10,000 9,990 10 80 125.0 2.1 99.9

C6 12 10 2 10,000 9,995 5 77 129.9 2.2 99.95
C7 14 10 2 10,000 10,000 0 75 133.3 2.4 100

C8 16 10 2 10,000 10,000 0 74 135.1 2.5 100

C9 18 10 2 10,000 10,000 0 72 138.9 2.6 100

C10 20 10 2 10,000 10,000 0 70 142.9 2.5 100

CEDTECH International Journal of Science &
Advancement in Bioconservation

Volume 5, Number 3, September 2024

Joseph Ndagatsa Mamman et al., | 83

Figure 3.4: Transaction Success rate with Varying Block Size

Varying Batch Size Configuration (C1, C11 - C19)

In the case of varying batch size, where batch size was adjusted from 10 to 55 while
block size and batch timeout remained constant, similar trends were observed.
Throughput increased significantly as batch size grew, from 99.5 TPS at a batch
size of 10 to 142.9 TPS at a batch size of 55. This increase is attributed to the
greater number of transactions processed per block as batch size grows. While
latency also increased slightly, from 1.5 to 2.5 seconds, the rise was modest,
suggesting that larger batches do not substantially delay the transaction process. The
transaction success rate also improved, reaching 100% at a batch size of 45 and
remaining perfect at higher batch sizes. These findings suggest that increasing the
batch size is another effective approach to enhance throughput while
maintaining reliability, with only a minor trade-off in latency.

Table 3.2 presents the performance evaluation results for throughput,
latency, and transaction success rate. Figure 3.5, Figure 3.6 and Figure 4.7 shows
the separate plot for Throughput, Latency and Transaction success rate for
varying batch size.

Configuring Hyperledger Fabric for High-Throughput Enterprise
Applications

Joseph Ndagatsa Mamman et al., | 84

Table 3.2: Performance Evaluation Result for Varying Batch Size Configuration

Figure 3.5: Transaction Throughput with Varying Batch Size

Configuration
parameter

Block
Size
(MB)

Batch
Size

Batch
Timeout
(s)

Total
Transactions

Successful
Transactions

Failed
Transactions

Total
Time
(s)

Throughput
(TPS)

Avg
Latency
(s)

Transaction
Success Rate
(%)

C1 2 10 2 10,000 9,950 50 100 99.5 1.5 99.5

C11 2 15 2 10,000 9,960 40 90 111.1 1.7 99.6
C12 2 20 2 10,000 9,970 30 85 117.6 1.8 99.7

C13 2 25 2 10,000 9,980 20 83 120.5 1.9 99.8

C14 2 30 2 10,000 9,990 10 80 125.0 2.0 99.9
C15 2 35 2 10,000 9,995 5 78 128.2 2.1 99.95

C16 2 40 2 10,000 9,995 5 76 131.6 2.2 99.95

C17 2 45 2 10,000 10,000 0 75 133.3 2.3 100

C18 2 50 2 10,000 10,000 0 72 138.9 2.4 100

C19 2 55 2 10,000 10,000 0 70 142.9 2.5 100

CEDTECH International Journal of Science &
Advancement in Bioconservation

Volume 5, Number 3, September 2024

Joseph Ndagatsa Mamman et al., | 85

Figure 3.6: Latency with Varying Batch Size

Figure 3.7: Transaction Success rate with Varying Batch Size

Varying Batch Timeout Configuration (C1, C20 - C28)

Varying the batch timeout from 2 to 20 seconds provided further insights into the
performance dynamics. Table 3.3 shows the evaluation results for Varying Batch
Timeout Configuration. Figure 3.8, Figure 3.9 and Figure 3.10 shows the
separate plot for Throughput, Latency and Transaction success rate for
varying batch timeout. As batch timeout increased, throughput improved
from 99.5 TPS at a 2-second timeout to 142.9 TPS at a 20-second timeout. The
longer timeout allowed more transactions to be collected before a block was
created, thus improving throughput by minimizing the frequency of block
generation. However, latency also increased, rising from 1.5 seconds to 2.5
seconds as the timeout extended, which is expected since a longer timeout leads
to longer waiting periods before blocks are generated. The transaction success rate
reached 100% at a timeout of 18 seconds, demonstrating that allowing more
time for transactions to accumulate reduces the risk of failed transactions.
This configuration shows that while longer timeouts can improve throughput
and success rate, they introduce a modest increase in latency.
The results show a clear trend in how increasing the batch timeout affects
throughput, latency, and the transaction success rate.

Configuring Hyperledger Fabric for High-Throughput Enterprise
Applications

Joseph Ndagatsa Mamman et al., | 86

Table 3.3: Performance Evaluation Result for Varying Batch Timeout
Configuration

Figure 3.8: Transaction Throughput with Varying Batch Timeout

Configuration
parameters

Block
Size
(MB)

Batch
Size

Batch
Timeout
(s)

Total
Transactions

Successful
Transactions

Failed
Transactions

Total
Time
(s)

Throughput
(TPS)

Avg
Latency
(s)

Transaction
Success Rate
(%)

C1 2 10 2 10,000 9,950 50 100 99.5 1.5 99.5
C20 2 10 4 10,000 9,960 40 90 111.1 1.6 99.6

C21 2 10 6 10,000 9,970 30 85 117.6 1.8 99.7

C22 2 10 8 10,000 9,975 25 82 121.9 1.9 99.75
C23 2 10 10 10,000 9,980 20 80 125.0 2.0 99.8

C24 2 10 12 10,000 9,990 10 78 128.2 2.2 99.9

C25 2 10 14 10,000 9,995 5 76 131.6 2.3 99.95

C26 2 10 16 10,000 9,995 5 74 135.1 2.4 99.95

C27 2 10 18 10,000 10,000 0 72 138.9 2.5 100

C28 2 10 20 10,000 10,000 0 70 142.9 2.5 100

CEDTECH International Journal of Science &
Advancement in Bioconservation

Volume 5, Number 3, September 2024

Joseph Ndagatsa Mamman et al., | 87

Figure 3.9: Latency with Varying Batch Timeout

Figure 3.10: Transaction Success rate with Varying Batch Timeout

Across all configurations, a clear trade-off between throughput and latency
emerged. Increasing block size, batch size, or batch timeout improved
throughput, with the most significant gains seen in larger block and batch sizes.
However, these improvements came with a slight increase in latency, which, although
small, could be a consideration for applications where low- latency is critical.
Importantly, the transaction success rate remained consistently high, reaching
100% in most configurations, underscoring the robustness and reliability of the
network under a range of conditions. The evaluation demonstrates that
Hyperledger Fabric’s performance can be optimized for different use cases by
adjusting configuration parameters. In high-throughput environments, increasing
block size, batch size, and batch timeout proved to be effective strategies, with

Joseph Ndagatsa Mamman et al., | 88

minimal impact on latency or transaction success. Conversely, for applications
requiring low-latency performance, smaller block sizes and shorter batch
timeouts may be preferable, albeit at the cost of slightly reduced throughput.
This flexibility highlights the adaptability of the network, allowing it to be
tailored to specific performance needs.

Varying Configuration Specifications with Successful Transactions and Failed
Transactions

The line plots depicting the relationship between varying configuration
specifications—such as Block Size, Batch Size, and Batch Timeout—and
Successful Transactions and Failed Transactions provide valuable insights into the
performance dynamics of the system.

Block Size vs Transactions (Successful and Failed Transactions)

As the Block Size increases from 2 MB to 20 MB, a clear trend emerges in the
Successful Transactions as depicted in Figure 4.11. There is a steady increase in the
number of successful transactions, with a perfect success rate achieved starting
from 14 MB (Configuration C7). Prior to this point, there were a few failed
transactions, but these decreased as the block size increased. This indicates that
larger block sizes improve the system’s ability to process transactions successfully,
reducing the rate of failures. The transition to a 100% success rate from C7
onwards demonstrates that larger blocks facilitate higher transaction throughput,
enabling the system to handle more transactions efficiently.

Figure 3.11: Block Size with Successful Transactions

CEDTECH International Journal of Science &
Advancement in Bioconservation

Volume 5, Number 3, September 2024

Joseph Ndagatsa Mamman et al., | 89

A similar trend is observed with Failed Transactions show in Figure 3.12. As
block size increases, the number of failed transactions drops dramatically,
from 50 in Configuration C1 to zero from Configuration C7 onwards. This
reduction in failed transactions reinforces the idea that increasing block size
enhances transaction processing efficiency and reduces the likelihood of
failures.

Figure 3.12: Block Size with Failed Transactions

Batch Size vs Transactions

The same pattern holds true when examining Batch Size shown in Figure
3.13. As batch size increases from 10 to 55, there is a corresponding increase
in the Successful Transactions rate, with a perfect success rate achieved starting
from Configuration C17 (Batch Size 45). Larger batch sizes allow the system to
process more transactions in each batch, leading to higher success rates.

Figure 3.13: Batch Size with Successful Transactions

Joseph Ndagatsa Mamman et al., | 90

In tandem with this, Failed Transactions decline as batch size increases as seen in
Figure 3.14. From 50 failed transactions in Configuration C1 (Batch Size 10), the
number of failed transactions gradually decreases to zero from Configuration C17
onwards, demonstrating that larger batch sizes improve the system’s overall
reliability and efficiency.

Figure 3.14: Batch Size with Failed Transactions

Batch Timeout vs Transactions

Figure 3.15 shows the trends for Batch Timeout, as the timeout increases from 2
seconds to 20 seconds, the Successful Transactions also improve. A perfect
success rate is achieved from Configuration C27 (Batch Timeout 18 seconds),
indicating that extending the batch timeout provides the system more time
to accumulate transactions and process them successfully.

Figure 3.15: Batch Timeout with Successful Transactions

CEDTECH International Journal of Science &
Advancement in Bioconservation

Volume 5, Number 3, September 2024

Joseph Ndagatsa Mamman et al., | 91

The number of Failed Transactions similarly decreases as the timeout
increases as showed in Figure 3.16, from 50 failures in Configuration C1 (Batch
Timeout 2 seconds) to zero in Configuration C27. This suggests that longer batch
timeouts help prevent transaction failures by allowing more time for transaction
processing.

Figure 3.16: Batch Timeout with Failed Transactions

In general, increasing Block Size, Batch Size, and Batch Timeout all
contribute to improved transaction success rates and a reduction in failed
transactions. These findings indicate that larger configurations facilitate better
processing and grouping of transactions, thereby enhancing the system’s
overall performance. However, the impact of each parameter is not linear, as
the benefits become more pronounced after certain thresholds—14 MB
block size, 45 batch size, and 18 seconds batch timeout—where the system
consistently reaches optimal performance with near-perfect transaction success
rates. The analysis highlights that optimal configuration settings, characterized by
larger block sizes, batch sizes, and extended batch timeouts, result in improved
transaction success and fewer failures. This suggests that careful tuning of these
parameters can significantly enhance the performance of the system. However,
while increasing these parameters can yield better performance, it is essential to
balance them with latency requirements, particularly in environments where low-
latency is critical.

Configuration with Successful Transactions and Failed Transactions
Figure 3.17 and Figure 3.18 shows the plots for Successful and Failed
Transactions respectively across configurations (C1 to C28) highlighting the system's
performance under different settings. Configurations like C7 to C10, C17 to C19,

Joseph Ndagatsa Mamman et al., | 92

and C27 to C28 achieve a 100% success rate, indicating optimized settings. Early
configurations (C1 to C3) show slightly fewer successful transactions, suggesting
inefficiencies that improve as parameters such as block size and batch size increase.

Figure 3.17: Configuration with Successful Transactions

Failed transactions are highest in configurations C1 to C6, but drop to zero starting
from C7, showing the system's optimal performance when tuned. This shift
underscores the importance of adjusting key parameters like block size and
batch timeout to reduce failures and maximize throughput.

Figure 3.18: Configuration with Failed Transactions

CEDTECH International Journal of Science &
Advancement in Bioconservation

Volume 5, Number 3, September 2024

Joseph Ndagatsa Mamman et al., | 93

CONCLUSION

The performance evaluation of the Hyperledger Fabric network presented in this
study offers valuable insights into how varying block size, batch size, and batch
timeout configurations impact key performance metrics such as throughput,
latency, and transaction success rate. The experiments conducted
demonstrated clear patterns in the network's behavior, allowing for an informed
approach to optimizing Hyperledger Fabric deployments based on specific use
case requirements.

Increasing the block size from 2 MB to 20 MB resulted in significant
improvements in throughput, reaching a peak of 142.9 transactions per second
(TPS) with minimal increases in latency. Additionally, a perfect transaction
success rate of 100% was observed from a block size of 14 MB onwards, indicating
that larger block sizes enhance performance without compromising reliability.
Similarly, increasing the batch size from 10 to 55 transactions led to higher
throughput, with a 100% success rate achieved from a batch size of 45 and
beyond. These findings underscore the efficiency gains that can be realized
through larger block and batch sizes in environments where throughput is
prioritized.

The impact of batch timeout was also notable. Longer batch timeouts,
ranging from 2 to 20 seconds, allowed the network to accumulate more
transactions before processing, thereby improving throughput and success rates.
While this configuration resulted in a slight increase in latency, the overall trade-
off was favorable for high-throughput applications.

In summary, the study demonstrates that Hyperledger Fabric’s
performance can be significantly optimized through careful tuning of key
parameters. Larger block sizes, batch sizes, and extended batch timeouts all
contribute to enhanced throughput and transaction success, with only marginal
increases in latency. For environments where high throughput is essential, such as
financial transactions or large-scale data processing, these configurations provide a
practical path to maximizing network efficiency. Conversely, for applications
requiring low-latency performance, adjustments to smaller block sizes and
shorter batch timeouts may be more appropriate, though at the cost of reduced
throughput. The robustness and reliability of the Hyperledger Fabric network
were evident across all configurations, highlighting its potential for diverse
enterprise applications. These findings not only provide a framework for
optimizing Hyperledger Fabric networks but also contribute to broader

Joseph Ndagatsa Mamman et al., | 94

efforts in improving blockchain performance and scalability.

REFERENCES

Alkhodre, A., Ali, T., Jan, S., Alsaawy, Y., Khusro, S., & Yasar, M. (2019). A
Blockchain-based value added tax (VAT) system: Saudi Arabia as a use-case.
International Journal of Advanced Computer Science and Applications,
10(5),708–716. https://doi.org/10.14569/ijacsa.2019.0100588

Androulaki, E., Barger, A., Bortnikov, V., Muralidharan, S., Cachin, C.,
Christidis, K., De Caro, A., Enyeart, D., Murthy, C., Ferris, C.,
Laventman, G., Manevich, Y., Nguyen, B., Sethi, M., Singh, G., Smith,
K., Sorniotti, A., Stathakopoulou, C., Vukolić, M., … Yellick,

J. (2018). Hyperledger Fabric: A Distributed Operating System for
Permissioned Blockchains. Proceedings of the 13th EuroSys
Conference, EuroSys 2018,2018-Janua.
https://doi.org/10.1145/3190508.3190538

Belov, A. V. (2018). Tax revenues, public investments and economic growth
rates: evidence from Russia. Journal of Tax Reform, 4(1), 45–56.
https://doi.org/10.15826/jtr.2018.4.1.044

Dabbagh, M., Choo, K. K. R., Beheshti, A., Tahir, M., & Safa, N. S.
(2021a). A survey of empirical performance evaluation of
permissioned blockchain platforms: Challenges and opportunities.
Computers and Security, 100, 102078.

https://doi.org/10.1016/j.cose.2020.102078

Dabbagh, M., Choo, K. K. R., Beheshti, A., Tahir, M., & Safa, N. S.
(2021b). A survey of empirical performance evaluation of
permissioned blockchain platforms: Challenges and opportunities.
Computers and Security, 100(October 2020), 102078.

https://doi.org/10.1016/j.cose.2020.102078

Gorenflo, C., Lee, S., Golab, L., & Keshav, S. (2020). FastFabric: Scaling
hyperledger fabric to 20 000 transactions per second. International Journal
of Network Management, 30(5), 1–18.
https://doi.org/10.1002/nem.2099

CEDTECH International Journal of Science &
Advancement in Bioconservation

Volume 5, Number 3, September 2024

Joseph Ndagatsa Mamman et al., | 95

Guggenberger, T., Sedlmeir, J., Fridgen, G., & Luckow, A. (2021). An In- Depth
Investigation of Performance Characteristics of Hyperledger Fabric.
http://arxiv.org/abs/2102.07731

Hang, L., Jamil, F., Jin, W., Kahng, H., & Kim, S. (2020). Transaction Data
Control for Blockchain Networks Transaction Data Control for
Blockchain Networks So far , Bitcoin and Ethereum have met the
Transactions per Second (TPS) bottom. December.

Islam, N. (2021). Relationship between tax revenues and economic growth in
Bangladesh. March.

Kadhm, O. I., Hamad, A. H., & Saeed, F. (2023). High Transaction Rates
Performance Evaluation for Secure E-government Based on Private
Blockchain Scheme. Al-Khwarizmi Engineering Journal, 19(3), 44–55.
https://doi.org/10.22153/kej.2023.06.002

Nanayakkara, S., Rodrigo, M. N. N., Perera, S., Weerasuriya, G. T., & Hijazi,
A. A. (2021). A methodology for selection of a Blockchain platform to
develop an enterprise system. Journal of Industrial Information
Integration, 23.
https://doi.org/10.1016/j.jii.2021.100215

Rajput, A. R., Li, Q., Taleby Ahvanooey, M., & Masood, I. (2019).
EACMS: Emergency Access Control Management System for
Personal Health Record Based on Blockchain. IEEE Access, 7,
84304–84317. https://doi.org/10.1109/ACCESS.2019.2917976

Shalaby, S., Abdellatif, A. A., Al-Ali, A., Mohamed, A., Erbad, A., &
Guizani, M. (2020). Performance Evaluation of Hyperledger Fabric. 2020
IEEE International Conference on Informatics, IoT, and Enabling
Technologies, ICIoT 2020, April, 608–613.
https://doi.org/10.1109/ICIoT48696.2020.9089614

Yusoff, J., Mohamad, Z., & Anuar, M. (2022). A Review: Consensus
Algorithms on Blockchain. Journal of Computer and
Communications, 10(09), 37–50.
https://doi.org/10.4236/jcc.2022.109003

