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ABSTRACT 

Blockchain technology, particularly Hyperledger Fabric (HLF), has become a 
key tool for enterprise applications due to its security, scalability, and flexible 
architecture. Unlike public blockchains, HLF operates in permissioned 
environments, allowing for fine-grained access control and privacy. However, 
optimizing its performance is essential, as inefficient configurations can lead to 
reduced throughput, increased latency, and lower transaction success rates. This 
study focuses on evaluating the performance of a Hyperledger Fabric network 
by adjusting key configuration parameters—block size, batch size, and batch timeout. 
The research aims to determine how these adjustments impact critical metrics like 
throughput, latency, and transaction success rates, offering valuable insights for 
optimizing the platform’s deployment in various enterprise environments. The 
performance evaluation was conducted on a controlled network setup, systematically 
altering the configuration parameters to assess their effects on the system. Results indicated 
that increasing block size and batch size significantly improved throughput, with the 
network achieving up to 142.9 transactions per second. These changes, while 
slightly increasing latency, maintained high transaction success rates, with a block size 
of 14 MB and a batch size of 45 or more achieving 100% success. Similarly, longer 
batch timeouts contributed to higher throughput, although they also resulted in 
marginally increased latency. The findings suggest that carefully tuning these configuration 
parameters can substantially enhance the performance of a Hyperledger Fabric 
network, making it more efficient for high-throughput enterprise applications. The 
study provides actionable insights for future deployments, ensuring that the system 
can meet the demands of enterprise-level blockchain implementations. 
 
Keywords: Hyperledger Fabric, Blockchain, Performance Evaluation, 
Throughput, Latency, Transaction Success Rate, Block Size, Batch Size, Batch 
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timeout, enterprise applications, permissioned blockchain, smart contracts, 
network optimization. 
 
INTRODUCTION 
Blockchain technology has revolutionized the management of transactions and data 
in distributed systems. It is widely recognized for its decentralized structure and 
immutable ledger, offering substantial benefits across various industries such as finance, 
healthcare, and supply chain management (Alkhodre et al., 2019; Hang et al., 
2020). Among the numerous blockchain platforms, Hyperledger Fabric stands 
out due to its modular architecture and permissioned framework, positioning it as a 
prime choice for enterprise-level applications that require security, scalability, 
and flexibility (Dabbagh et al., 2021a; Rajput et al., 2019). These features allow for the 
customization of business logic through the use of smart contracts, while maintaining 
strong transaction management capabilities (Androulaki et al., 2018; Guggenberger 
et al., 2021). In contrast to public blockchains like Bitcoin and Ethereum, 
which function in open, trustless environments (Yusoff et al., 2022), Hyperledger 
Fabric is specifically designed for permissioned environments that require fine-
grained access control, privacy, and confidentiality in transactions. Its architecture 
supports both modularity and flexibility (Androulaki et al., 2018), allowing 
organizations to adapt the platform to their unique use cases while maintaining 
control over data and participants. In enterprise blockchain deployments, 
performance optimization is crucial to ensuring efficient, scalable, and reliable 
operations (Gorenflo et al., 2020). Configuring a blockchain network like 
Hyperledger Fabric involves setting parameters such as block size, batch size, and 
batch timeout. These parameters directly influence the network's throughput, 
latency, and transaction success rate. However, improper tuning of these variables 
can lead to inefficiencies, such as high latency or reduced throughput, 
impacting the overall performance of the system (Kadhm et al., 2023). To ensure that 
Hyperledger Fabric performs optimally for specific use cases, it is essential to 
understand the impact of varying these parameters. The goal of this research is to 
evaluate the performance of a Hyperledger Fabric network by systematically varying block 
size, batch size, and batch timeout. This study focuses on how these configurations 
affect key performance metrics, such as throughput (transactions per second), 
latency, and transaction success rate. By conducting a detailed performance evaluation, 
the research aims to provide insights into the trade-offs between improving 
throughput and managing latency, offering valuable data for the optimization 
of Hyperledger Fabric in different deployment environments (Gorenflo et al., 
2020). The findings of this study are critical for organizations that plan to deploy 
Hyperledger Fabric for enterprise applications. Whether the aim is to 
maximize throughput, minimize latency, or ensure a high transaction success 
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rate, this research provides a framework for tuning key configuration 
parameters to meet specific performance requirements. Moreover, these 
results will contribute to future enhancements of Hyperledger Fabric, guiding 
further developments in blockchain technology to meet the evolving 
demands of industry applications (Nanayakkara et al., 2021; Belov, 2018; Islam, 
2021). In this research, Hyperledger Fabric (HLF) is identified as an open-source, 
permissioned blockchain platform, developed under the Linux Foundation, 
specifically designed to meet the needs of enterprise-level applications (Dabbagh et al., 
2021b). Its permissioned nature enables organizations to exercise control over 
network participants and ensure privacy, setting it apart from public blockchains 
like Bitcoin and Ethereum, which operate in open environments (Shalaby et 
al., 2020). A key innovation in HLF is its Execute-Order-Validate transaction 
model, which differentiates it from the conventional Order-Execute model found 
in many other blockchain platforms (Alkhodre et al., 2019). 
 
The traditional order-execute model operates by first ordering transactions 
through a consensus protocol. Afterward, during the execution phase, each peer 
processes the transactions sequentially in the exact same order. This process, 
although ensuring uniformity across the network, significantly reduces 
performance, as each peer must process all transactions in a block. This sequential 
execution leads to higher latency and limits throughput, making the system less 
efficient, especially as the network scales (Shalaby et al., 2020). In contrast, the 
execute-order-validate model used by Hyperledger Fabric improves 
network efficiency by decoupling the execution phase from the ordering 
phase. This allows transactions to be executed concurrently by peers, leading to 
better overall performance, reduced latency, and increased scalability (Dabbagh 
et al., 2021b). Another distinctive feature of Hyperledger Fabric is its support for 
general- purpose programming languages such as Java, Go, and Node.js for the 
development of smart contracts, referred to as chaincodes within the Fabric ecosystem 
(Shalaby et al., 2020). This flexibility contrasts with other blockchain 
platforms that follow the order-execute model, where smart contracts are often 
required to be written in Domain-Specific Languages (DSLs) to ensure 
determinism. These platforms enforce determinism in smart contracts to 
prevent inconsistent transaction outcomes, which can occur in a decentralized 
environment (Androulaki et al., 2018). 
 
By allowing general-purpose languages, HLF provides developers with a more 
versatile and accessible framework for developing business logic, making it a 
highly adaptable solution for diverse enterprise use cases. 
Overall, Hyperledger Fabric’s architectural innovations—specifically, its execute-
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order-validate transaction model and support for general-purpose programming 
languages—position it as a powerful blockchain platform tailored to the 
performance, security, and flexibility demands of enterprise environments. 
 

METHODOLOGY 

Performance Evaluation for Varying Hyperledger Fabric Network Configurations 
This research presents a detailed performance evaluation of a Hyperledger Fabric 
network, focusing on the impact of varying configurations of block size, batch 
size, and batch timeout on key performance metrics. The evaluation was 
conducted on an HP laptop featuring a 4th generation Intel Core i5-4200U 
processor, operating under Ubuntu 22.04 with 12 GB of RAM. The network 
is configured to utilize a majority endorsement policy,   with Level DB serving 
as the state database and Raft as the ordering mechanism. 
 

Varying Block Size (MB) Configuration 

The analysis of the varying block size configuration involves adjustments from 2 
MB to 20 MB, incremented by 2 MB as shown in Table 2.1. This aspect of 
the evaluation aims to investigate the influence of block size on system 
performance. It is anticipated that increasing block size may enhance 
throughput by reducing the frequency of block generation. However, larger 
blocks could also lead to increased latency if the system requires more time for 
processing. 
 

Table 2.1: Varying Block Size Configuration 

 

Configuration 
Parameter 

Block Size 
(MB) 

Batch Size Batch 
Timeout (s) 

Total Transactions 

C1 2 10 2 10,000 
C2 4 10 2 10,000 
C3 6 10 2 10,000 
C4 8 10 2 10,000 
C5 10 10 2 10,000 
C6 12 10 2 10,000 
C7 14 10 2 10,000 
C8 16 10 2 10,000 
C9 18 10 2 10,000 
C10 20 10 2 10,000 
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Varying Batch Size Configuration 

The varying batch size configuration examines transaction batches ranging from 10 
to 55 as depicted in Table 2.2. This part of the evaluation seeks to understand 
how batch size affects the network's performance metrics. It is expected that 
larger batch sizes will improve throughput, as more transactions can be 
processed collectively, although there may be a corresponding increase in 
latency as transactions are collected into larger batches. 

Table 2.2: Varying Batch Size Configuration 

Configuration 
Parameter 

Block Size 
(MB) 

Batch 
Size 

Batch 
Timeout (s) 

Total 
Transactions 

C1 2 10 2 10,000 
C11 2 15 2 10,000 
C12 2 20 2 10,000 
C13 2 25 2 10,000 
C14 2 30 2 10,000 
C15 2 35 2 10,000 

C16 2 40 2 10,000 
C17 2 45 2 10,000 
C18 2 50 2 10,000 
C19 2 55 2 10,000 
 
Varying Batch Timeout (s) Configuration 
In the varying batch timeout configuration, the timeout period is adjusted from 2 
seconds to 20 seconds as shown in Table 2.3. This configuration allows for an 
exploration of how the length of time transactions are held before being 
processed influences overall network performance. A longer batch timeout may 
lead to higher throughput and transaction success rates due to greater transaction 
accumulation, but it may also result in increased latency as transactions wait longer 
to be processed. 

Table 2.3: Varying Batch Timeout Configuration 

Configuration 
Parameter 

Block Size 
(MB) 

Batch 
Size 

Batch Timeout 
(s) 

Total 
Transactions 

C1 2 10 2 10,000 
C20 2 10 4 10,000 
C21 2 10 6 10,000 
C22 2 10 8 10,000 
C23 2 10 10 10,000 

C24 2 10 12 10,000 
C25 2 10 14 10,000 
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Configuration 
Parameter 

Block Size 
(MB) 

Batch 
Size 

Batch Timeout 
(s) 

Total 
Transactions 

C26 2 10 16 10,000 
C27 2 10 18 10,000 
C28 2 10 20 10,000 

 
 
These tables present a comprehensive view of the varying configurations for block 
size, batch size, and batch timeout, along with a total transaction count for each 
configuration. The comprehensive performance evaluation aims to clarify the trade-
offs associated with block size, batch size, and batch timeout configurations in a 
Hyperledger Fabric network. By systematically analyzing these parameters, the 
study intends to identify optimal settings that maximize throughput while 
minimizing latency and maintaining a high transaction success rate. The findings 
from this evaluation will offer significant insights into the performance dynamics 
of Hyperledger Fabric, aiding in the optimization of future deployments and 
configurations for enhanced efficiency and reliability. 
 

Performance Metrics 

In evaluating the performance of a Hyperledger Fabric network, several key metrics 
are utilized, each defined mathematically to quantify system efficiency and 
effectiveness. Below are the primary performance metrics analyzed in this study, 
along with their corresponding mathematical equations: 
 
Throughput (Transactions per Second - TPS) Throughput measures the 
number of transactions successfully processed by the network in one second. It is 
calculated using the formula as shown in equation 2.1 
 

Where: 

 Transaction Commit Time: The timestamp indicating when the transaction 
is committed. 

 Transaction Submission Time: The timestamp indicating when the transaction 
is submitted. 

 Total Transactions: The total number of transactions submitted. 
 

Transaction Success Rate (%) 

The transaction success rate quantifies the percentage of transactions that are 
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successfully completed out of the total submitted. It is calculated using equation 2.3 
 (%) ݁ݐܴܽ ݏݏ݁ܿܿݑܵ ݊݋݅ݐܿܽݏ݊ܽݎܶ

= Successful Transactions ∗ 100 (2.3) 

Total Transactions  
 
Where: 

 Successful Transactions is the count of transactions that were completed 
successfully. 

 Total Transactions is the total number of transactions submitted. 
 
These performance metrics—throughput, latency, and transaction success rate—
are essential in understanding the operational capabilities of the Hyperledger 
Fabric network. By evaluating these metrics under varying configurations of 
block size, batch size, and batch timeout, this study aims to provide a 
comprehensive analysis of the network's performance characteristics. The 
inclusion of mathematical equations allows for a precise quantification of 
each metric, guiding future enhancements and optimizations. 
 

Performance Evaluation Results 

The evaluation of the Hyperledger Fabric network's performance under 
different configurations was evaluated using the metrics of Throughput (TPS), 
Latency (Seconds), and Transaction Success Rate (%) using equations (2.1), 
(2.2), and (2.3). The varying configurations (block size, batch size, and batch 
timeout) were plotted against configuration parameters as shown in Figure 
3.1 which represents the input values. The goal was to assess how each varying 
configuration impacts the network’s ability to handle transactions efficiently and 
reliably. These results also help illustrate how varying Block Size, Batch Size, and 
Batch Timeout affect system behavior. 
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Figure 3.1: Configuration Parameters with Varying Configuration 

Varying Block Size Configuration (C1 - C10) 

Table 3.1 shows the performance evaluation result for Varying Block Size 
configuration. The block size was varied while the batch size and batch timeout 
were held constant. The analysis reveals a direct relationship between block 
size and throughput. As block size increased, throughput rose from 99.5 
transactions per second (TPS) at 2 MB to 142.9 TPS at 20 MB. This trend reflects 
the efficiency gained when larger blocks are used to batch more transactions 
together, reducing the overhead of frequent block creation. Latency showed a 
marginal increase, ranging from 1.5 to 2.5 seconds, but remained within 
acceptable limits even at higher block sizes. Transaction success rate was 
consistently high, reaching 100% at a block size of 14 MB and maintaining that 
level for larger block sizes. This indicates that the system is highly reliable, 
successfully processing almost all transactions even with larger blocks. These results 
suggest that increasing block size is a highly effective way to boost throughput with 
minimal impact on latency or transaction success, making it a suitable 
strategy for environments prioritizing performance. Figure 3.2, Figure 3.3 and 
Figure 3.4 shows the separate plot for Transaction Throughput, Latency and 
Transaction success rate for varying block size. The increase in throughput can be 
attributed to the system's ability to accumulate and commit a greater number of 
transactions in larger blocks before reaching the block size limit, thereby reducing 
the frequency of block creation and improving the overall transaction processing 
rate. 
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Table 3.1: Performance Evaluation Result for Varying Block Size Configuration 

 
 
Figure 3.2: Transaction Throughput with Varying Block Size 

Figure 3.3: Latency with Varying Block Size 

Configuration 
parameters 

Block 
Size 
(MB) 

Batch 
Size 

Batch 
Timeout 
(s) 

Total 
Transactions 

Successful 
Transactions 

Failed 
Transactions 

Total 
Time 
(s) 

Throughput 
(TPS) 

Avg 
Latency 
(s) 

Transaction 
Success Rate 
(%) 

C1 2 10 2 10,000 9,950 50 100 99.5 1.5 99.5 

C2 4 10 2 10,000 9,980 20 90 111.1 1.7 99.8 
C3 6 10 2 10,000 9,970 30 85 117.6 1.9 99.7 

C4 8 10 2 10,000 9,985 15 82 121.9 2.0 99.9 

C5 10 10 2 10,000 9,990 10 80 125.0 2.1 99.9 

C6 12 10 2 10,000 9,995 5 77 129.9 2.2 99.95 
C7 14 10 2 10,000 10,000 0 75 133.3 2.4 100 

C8 16 10 2 10,000 10,000 0 74 135.1 2.5 100 

C9 18 10 2 10,000 10,000 0 72 138.9 2.6 100 

C10 20 10 2 10,000 10,000 0 70 142.9 2.5 100 
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Figure 3.4: Transaction Success rate with Varying Block Size 

 

Varying Batch Size Configuration (C1, C11 - C19) 

In the case of varying batch size, where batch size was adjusted from 10 to 55 while 
block size and batch timeout remained constant, similar trends were observed. 
Throughput increased significantly as batch size grew, from 99.5 TPS at a batch 
size of 10 to 142.9 TPS at a batch size of 55. This increase is attributed to the 
greater number of transactions processed per block as batch size grows. While 
latency also increased slightly, from 1.5 to 2.5 seconds, the rise was modest, 
suggesting that larger batches do not substantially delay the transaction process. The 
transaction success rate also improved, reaching 100% at a batch size of 45 and 
remaining perfect at higher batch sizes. These findings suggest that increasing the 
batch size is another effective approach to enhance throughput while 
maintaining reliability, with only a minor trade-off in latency. 
 
Table 3.2 presents the performance evaluation results for throughput, 
latency, and transaction success rate. Figure 3.5, Figure 3.6 and Figure 4.7 shows 
the separate plot for Throughput, Latency and Transaction success rate for 
varying batch size. 
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Table 3.2: Performance Evaluation Result for Varying Batch Size Configuration 

 
Figure 3.5: Transaction Throughput with Varying Batch Size 

 
 
 
 
 
 
 
 
 
 
 

Configuration 
parameter 

Block 
Size 
(MB) 

Batch 
Size 

Batch 
Timeout 
(s) 

Total 
Transactions 

Successful 
Transactions 

Failed 
Transactions 

Total 
Time 
(s) 

Throughput 
(TPS) 

Avg 
Latency 
(s) 

Transaction 
Success Rate 
(%) 

C1 2 10 2 10,000 9,950 50 100 99.5 1.5 99.5 

C11 2 15 2 10,000 9,960 40 90 111.1 1.7 99.6 
C12 2 20 2 10,000 9,970 30 85 117.6 1.8 99.7 

C13 2 25 2 10,000 9,980 20 83 120.5 1.9 99.8 

C14 2 30 2 10,000 9,990 10 80 125.0 2.0 99.9 
C15 2 35 2 10,000 9,995 5 78 128.2 2.1 99.95 

C16 2 40 2 10,000 9,995 5 76 131.6 2.2 99.95 

C17 2 45 2 10,000 10,000 0 75 133.3 2.3 100 

C18 2 50 2 10,000 10,000 0 72 138.9 2.4 100 

C19 2 55 2 10,000 10,000 0 70 142.9 2.5 100 
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Figure 3.6: Latency with Varying Batch Size 

 
Figure 3.7: Transaction Success rate with Varying Batch Size 

 

Varying Batch Timeout Configuration (C1, C20 - C28) 

Varying the batch timeout from 2 to 20 seconds provided further insights into the 
performance dynamics. Table 3.3 shows the evaluation results for Varying Batch 
Timeout Configuration. Figure 3.8, Figure 3.9 and Figure 3.10 shows the 
separate plot for Throughput, Latency and Transaction success rate for 
varying batch timeout. As batch timeout increased, throughput improved 
from 99.5 TPS at a 2-second timeout to 142.9 TPS at a 20-second timeout. The 
longer timeout allowed more transactions to be collected before a block was 
created, thus improving throughput by minimizing the frequency of block 
generation. However, latency also increased, rising from 1.5 seconds to 2.5 
seconds as the timeout extended, which is expected since a longer timeout leads 
to longer waiting periods before blocks are generated. The transaction success rate 
reached 100% at a timeout of 18 seconds, demonstrating that allowing more 
time for transactions to accumulate reduces the risk of failed transactions. 
This configuration shows that while longer timeouts can improve throughput 
and success rate, they introduce a modest increase in latency. 
The results show a clear trend in how increasing the batch timeout affects 
throughput, latency, and the transaction success rate. 
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Table 3.3: Performance Evaluation Result for Varying Batch Timeout 
Configuration 

Figure 3.8: Transaction Throughput with Varying Batch Timeout 

Configuration 
parameters 

Block 
Size 
(MB) 

Batch 
Size 

Batch 
Timeout 
(s) 

Total 
Transactions 

Successful 
Transactions 

Failed 
Transactions 

Total 
Time 
(s) 

Throughput 
(TPS) 

Avg 
Latency 
(s) 

Transaction 
Success Rate 
(%) 

C1 2 10 2 10,000 9,950 50 100 99.5 1.5 99.5 
C20 2 10 4 10,000 9,960 40 90 111.1 1.6 99.6 

C21 2 10 6 10,000 9,970 30 85 117.6 1.8 99.7 

C22 2 10 8 10,000 9,975 25 82 121.9 1.9 99.75 
C23 2 10 10 10,000 9,980 20 80 125.0 2.0 99.8 

C24 2 10 12 10,000 9,990 10 78 128.2 2.2 99.9 

C25 2 10 14 10,000 9,995 5 76 131.6 2.3 99.95 

C26 2 10 16       10,000 9,995 5 74 135.1 2.4 99.95 

C27 2 10 18       10,000 10,000 0 72 138.9 2.5 100 

C28 2 10 20       10,000 10,000 0 70 142.9 2.5 100 
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Figure 3.9: Latency with Varying Batch Timeout 
 

 
Figure 3.10: Transaction Success rate with Varying Batch Timeout 

 
Across all configurations, a clear trade-off between throughput and latency 
emerged. Increasing block size, batch size, or batch timeout improved 
throughput, with the most significant gains seen in larger block and batch sizes. 
However, these improvements came with a slight increase in latency, which, although 
small, could be a consideration for applications where low- latency is critical. 
Importantly, the transaction success rate remained consistently high, reaching 
100% in most configurations, underscoring the robustness and reliability of the 
network under a range of conditions. The evaluation demonstrates that 
Hyperledger Fabric’s performance can be optimized for different use cases by 
adjusting configuration parameters. In high-throughput environments, increasing 
block size, batch size, and batch timeout proved to be effective strategies, with 
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minimal impact on latency or transaction success. Conversely, for applications 
requiring low-latency performance, smaller block sizes and shorter batch 
timeouts may be preferable, albeit at the cost of slightly reduced throughput. 
This flexibility highlights the adaptability of the network, allowing it to be 
tailored to specific performance needs. 
 

Varying Configuration Specifications with Successful Transactions and Failed 
Transactions 

The line plots depicting the relationship between varying configuration 
specifications—such as Block Size, Batch Size, and Batch Timeout—and 
Successful Transactions and Failed Transactions provide valuable insights into the 
performance dynamics of the system. 
 

Block Size vs Transactions (Successful and Failed Transactions) 

As the Block Size increases from 2 MB to 20 MB, a clear trend emerges in the 
Successful Transactions as depicted in Figure 4.11. There is a steady increase in the 
number of successful transactions, with a perfect success rate achieved starting 
from 14 MB (Configuration C7). Prior to this point, there were a few failed 
transactions, but these decreased as the block size increased. This indicates that 
larger block sizes improve the system’s ability to process transactions successfully, 
reducing the rate of failures. The transition to a 100% success rate from C7 
onwards demonstrates that larger blocks facilitate higher transaction throughput, 
enabling the system to handle more transactions efficiently. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.11: Block Size with Successful Transactions 
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A similar trend is observed with Failed Transactions show in Figure 3.12. As 
block size increases, the number of failed transactions drops dramatically, 
from 50 in Configuration C1 to zero from Configuration C7 onwards. This 
reduction in failed transactions reinforces the idea that increasing block size 
enhances transaction processing efficiency and reduces the likelihood of 
failures. 

Figure 3.12: Block Size with Failed Transactions 
 

Batch Size vs Transactions 

The same pattern holds true when examining Batch Size shown in Figure 
3.13. As batch size increases from 10 to 55, there is a corresponding increase 
in the Successful Transactions rate, with a perfect success rate achieved starting 
from Configuration C17 (Batch Size 45). Larger batch sizes allow the system to 
process more transactions in each batch, leading to higher success rates. 

Figure 3.13: Batch Size with Successful Transactions 
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In tandem with this, Failed Transactions decline as batch size increases as seen in 
Figure 3.14. From 50 failed transactions in Configuration C1 (Batch Size 10), the 
number of failed transactions gradually decreases to zero from Configuration C17 
onwards, demonstrating that larger batch sizes improve the system’s overall 
reliability and efficiency. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.14: Batch Size with Failed Transactions 

Batch Timeout vs Transactions 

Figure 3.15 shows the trends for Batch Timeout, as the timeout increases from 2 
seconds to 20 seconds, the Successful Transactions also improve. A perfect 
success rate is achieved from Configuration C27 (Batch Timeout 18 seconds), 
indicating that extending the batch timeout provides the system more time 
to accumulate transactions and process them successfully. 

 
Figure 3.15: Batch Timeout with Successful Transactions 



CEDTECH International Journal of Science & 
Advancement in Bioconservation 

Volume 5, Number 3, September 2024 

Joseph Ndagatsa Mamman et al., | 91 

 

 

The number of Failed Transactions similarly decreases as the timeout 
increases as showed in Figure 3.16, from 50 failures in Configuration C1 (Batch 
Timeout 2 seconds) to zero in Configuration C27. This suggests that longer batch 
timeouts help prevent transaction failures by allowing more time for transaction 
processing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.16: Batch Timeout with Failed Transactions 
 
In general, increasing Block Size, Batch Size, and Batch Timeout all 
contribute to improved transaction success rates and a reduction in failed 
transactions. These findings indicate that larger configurations facilitate better 
processing and grouping of transactions, thereby enhancing the system’s 
overall performance. However, the impact of each parameter is not linear, as 
the benefits become more pronounced after certain thresholds—14 MB 
block size, 45 batch size, and 18 seconds batch timeout—where the system 
consistently reaches optimal performance with near-perfect transaction success 
rates. The analysis highlights that optimal configuration settings, characterized by 
larger block sizes, batch sizes, and extended batch timeouts, result in improved 
transaction success and fewer failures. This suggests that careful tuning of these 
parameters can significantly enhance the performance of the system. However, 
while increasing these parameters can yield better performance, it is essential to 
balance them with latency requirements, particularly in environments where low-
latency is critical. 
 
Configuration with Successful Transactions and Failed Transactions  
Figure 3.17 and Figure 3.18 shows the plots for Successful and Failed 
Transactions respectively across configurations (C1 to C28) highlighting the system's 
performance under different settings. Configurations like C7 to C10, C17 to C19, 
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and C27 to C28 achieve a 100% success rate, indicating optimized settings. Early 
configurations (C1 to C3) show slightly fewer successful transactions, suggesting 
inefficiencies that improve as parameters such as block size and batch size increase. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.17: Configuration with Successful Transactions 
 
Failed transactions are highest in configurations C1 to C6, but drop to zero starting 
from C7, showing the system's optimal performance when tuned. This shift 
underscores the importance of adjusting key parameters like block size and 
batch timeout to reduce failures and maximize throughput. 

 
Figure 3.18: Configuration with Failed Transactions 
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CONCLUSION 

The performance evaluation of the Hyperledger Fabric network presented in this 
study offers valuable insights into how varying block size, batch size, and batch 
timeout configurations impact key performance metrics such as throughput, 
latency, and transaction success rate. The experiments conducted 
demonstrated clear patterns in the network's behavior, allowing for an informed 
approach to optimizing Hyperledger Fabric deployments based on specific use 
case requirements. 
 
Increasing the block size from 2 MB to 20 MB resulted in significant 
improvements in throughput, reaching a peak of 142.9 transactions per second 
(TPS) with minimal increases in latency. Additionally, a perfect transaction 
success rate of 100% was observed from a block size of 14 MB onwards, indicating 
that larger block sizes enhance performance without compromising reliability. 
Similarly, increasing the batch size from 10 to 55 transactions led to higher 
throughput, with a 100% success rate achieved from a batch size of 45 and 
beyond. These findings underscore the efficiency gains that can be realized 
through larger block and batch sizes in environments where throughput is 
prioritized. 
 
The impact of batch timeout was also notable. Longer batch timeouts, 
ranging from 2 to 20 seconds, allowed the network to accumulate more 
transactions before processing, thereby improving throughput and success rates. 
While this configuration resulted in a slight increase in latency, the overall trade-
off was favorable for high-throughput applications. 
 
In summary, the study demonstrates that Hyperledger Fabric’s 
performance can be significantly optimized through careful tuning of key 
parameters. Larger block sizes, batch sizes, and extended batch timeouts all 
contribute to enhanced throughput and transaction success, with only marginal 
increases in latency. For environments where high throughput is essential, such as 
financial transactions or large-scale data processing, these configurations provide a 
practical path to maximizing network efficiency. Conversely, for applications 
requiring low-latency performance, adjustments to smaller block sizes and 
shorter batch timeouts may be more appropriate, though at the cost of reduced 
throughput. The robustness and reliability of the Hyperledger Fabric network 
were evident across all configurations, highlighting its potential for diverse 
enterprise applications. These findings not only provide a framework for 
optimizing Hyperledger Fabric networks but also contribute to broader 
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efforts in improving blockchain performance and scalability. 
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