

SAW DUST CONCRETE WITH VARIOUS PERCENTAGES OF METAKAOLIN

¹Gana A.J., ²Ogunleye, O.D., ³Braimoh S.O. & ⁴Amodu. M.F ¹²³Civil Engineering Department, College of Engineering Landmark University Omu-Aran ⁴Agric and Biosystemengineering Department Landmark University Omu-Aran, Kwara State Email: phildebo123@gmail.com, braimohsolomon@Imu.edu.ng or braimohsolo@gmail.com, amodu.matthew@Imu.edu.ng

ABSTRACT

This study established the effects of Metakaolin on Sawdust Concrete as an additive in concrete composites. The workability density, flexural strength and compressive strength of the sawdust concrete and Sawdust Concrete with various percentages (i.e 5%, 10% and 15%) of Metakaolin were compared to that of normal mix batch conventional concrete. The mix design was based on relevant concrete mix design codes. The 150mm x 150mm x 150mm cube specimens was used for the compressive strength. Testing of 200mm x 100mm x 50mm rectangular Beam specimens Test for flexural strength. The specimens were cured in water and were tested after 7, 14 and 28 days. The tests showed that the workability of concrete reduces after using Sawdust as full replacement of snad and also reduces after the addition of Mekaolin in Sawdust concrete. Tests on compressive and flexural strength showed that Sawdust Concrete had light weight, but the addition of Mekaolin enhanced the strength of the concrete, although concrete strength does not increase proportionally with increasing fibre. The increased in strength was just up to a certain Metakaolin compressive and flexural strength after 28 days of curing

Keywords: Strength, Evaluation, Saw-dust, Concrete, Metakaolin.

INTRODUCTION

Waste materials have always been regarded by a large number of people with no knowledge as being worthless and of no use so thereby they should be disposed. Ever since man came into existence, agriculture and has always been a major source of survival and livelihood. As a result of man's concentrated engagement in agriculture due to rate of population growth and increase in standard of living, the rate at which fibre waste from wood called sawdust an industrial waste from cutting and grinding of timber in the form of fine particles is being generated is rapidly increasing, this is common in most countries both developed, underdeveloped and developing countries like Nigeria. due to the use of this material for various reasons such as furniture making etc. In recent years there have been attempts and methods in controlling this waste product through burning and improper disposal. As stated by (Cheremisinoff, 2003) these methods have been proven to be unsustainable and harmful to the environment as rotten agricultural wastes produces methane and leachate, and burning of these wastes leads to the release of CO₂ and other particulates.

As a result of this; in recent years' various research works have been conducted to study and monitor how these agricultural wastes can best be effectively reused in the production of other materials. In this study, the use of sawdsust as partial replacement for sandin concrete production and also replacing cement with metakaolin as a binding agent in production of concrete composites were used.

MATERIALS AND METHODS

- 1. **Materials**: The materials used in theis study are:- water, cement, Metakaolin, Sawdust, Fine aggregate and coarse aggregates.
- 2. **Methods**: The sample of materials for the study was prepared in accordance with a standard body. The quantity of each material was measured and weighed, while the mixing of concrete was done manually, Batching carried out by volume for sawdust. The curing of concrete was done in a curing tank filled of water at a controlled temperature of 20-25°c. The Laboratory Tests carried out on the concrete are the following:-
 - (i) Specific gravity
 - (ii) Moisture content
 - (iii) Sieve analysis
 - (iv) Abrasion test
 - (v) Impact test
 - (vi) XER test

Slump test, compaction factor test, compressive strength and flexural strength tests were also carried out in order to ascertained the adequacy of the results for analysis.

RESULTS AND DISCUSSION

Specific Gravity

The specific gravity was performed to determine the density of the supplementary cementitious material, fine aggregate, coarse aggregate and sawdust. Table 4.1, Table 4.2, Table 4.3 and 4.4 shows the result of the specific gravity test carried out on fine aggregate, sawdust and metakaolin

Table 4.1 Specific gravity test	Specific gravity test result for fine aggregate		
Sample	Weight (g)		
Weight of pycnometer	19.5		
Weight of pycnometer + sample	35.5		
Weight of pycnometer + wet sample	82.5		
Weight of pycnometer + water	72.5		
Specific Gravity (GS)	2.67		

 Table 4.2
 Specific gravity test result for sawdust

Sample	Weight (g)
Weight of pycnometer	19.5
Weight of pycnometer + sample	41.5
Weight of pycnometer + wet sample	66.5
Weight of pycnometer + water	60.0
Specific Gravity (GS)	1. 41

Table 4.3 Specific gravity of Metakaolin

Sample	Weight (g)
Weight of pycnometer	19.5
Weight of pycnometer + sample	34.5
Weight of pycnometer + wet sample	81.0
Weight of pycnometer + water	72.50
Specific Gravity (GS)	2. 15

Table 4.4 Specific gravity of Cement

Sample	Weight (g)
Weight of pycnometer	19.5
Weight of pycnometer + sample	34.0
Weight of pycnometer + wet	79.00

sample	
Weight of pycnometer + water	67.00
Specific Gravity (GS)	2.50

Moisture Content

Table 4.3 shows the result of the moisture content carried out on fine aggregate sample

 Table 4.5 moisture content test result for sawdust

Sample	Weight (g)
Weight of container W1	22.5
Weight of container+ wet sample W2	144.5
Weight of container + dry sample W3	138.5
Weight of dry soil	116
Moisture content w (%)	5.17

Sieve Analysis

The sieves were then separated and the weight of the metakaolin, fine aggregate and sawdust retained and passing through each sieve was carefully tabulated. Table 4.6 to Table 4.8 shows the result of the sieve analysis carried out on fine aggregate and sawdust respectively which are then represented graphically in Figure 4.1 and Figure 4.2

 Table 4.6 sieve analysis for fine aggregate

Sieve Number	Diameter (mm)	Mass of Sieve (g)	Mass of Sieve & Soil (g)	Soil Retained (g)	Soil Retained (%)	Soil Passing (%)
	4.750	530.0	530.0	0.00	0	100
	2.000	525.5	632	106.50	10.7	89.4
	1.180	494.0	608	114.00	11.4	78.0
	0.600	477.0	929	452.00	45.2	32.8
	0.425	454.0	546	92.00	9.2	23.6
	0.300	449.0	552	103.00	10.3	13.3
	0.212	420.0	472.5	52.50	5.3	8.0
	0.150	402.0	432	30.00	3.0	10.3
	0.075	367.0	384	17.00	1.7	8.5
	0.063	381.5	383	1.50	0.2	8.4
Pan	0.055	389.0	390	1.00	0.1	0.0
			TOTAL:	969.50	97.0	
]

Saw Dust Concrete with Various Percentages of Metakaolin

Fig 4.1 Sieve analysis for fine aggregate Table 4.7 sieve analysis for sawdust

Sieve Number	Diameter (mm)	Mass of Sieve (g)	Mass of Sieve & Soil (g)	Soil Retained (g)	Soil Retained (%)	Soil Passing (%)
	4.750	530.0	530.0	0.00	0	100
	2.000	525.5	536	10.50	1.1	99.0
	1.180	494.0	515.5	21.50	2.2	96.8
	0.600	477.0	635.5	158.50	15.9	81.0
	0.425	454.0	479.5	25.50	2.6	78.4
	0.300	449.0	467	18.00	1.8	76.6
	0.212	420.0	431	11.00	1.1	75.5
	0.150	402.0	416.5	14.50	1.5	75.2
	0.075	367.0	372.5	5.50	0.6	74.6
	0.063	381.5	382.5	1.00	0.1	74.5
Pan	0.055	389.0	393.5	4.50	0.5	0.0
			TOTAL:	270.50	27.1	

CEDTECH International Journal of Science & Advancement in Bioconservation Volume 2, Number 3, September 2021

Fig 4.2 Sieve analysis for sawdust Table 4.8 sieve analysis for Metakaolin

Sieve Size (mm)	Weight of Soil Retained on Sieve (g)	Weight of Sieve(g)	Weight of soil Retained (g)	Weight of Soil Passing (g)	Percentage Retained (%)	Percentage Passing (%)
2.000	518.50	517.00	1.50	94.00	1.57	98.43
1.180	490.50	490.00	0.50	93.50	0.52	97.91
0.600	473.50	473.50	0.00	93.50	0.00	97.91
0.425	455.50	452.50	3.00	90.50	3.14	94.76
0.300	446.50	435.00	11.50	79.00	12.04	82.72
0.212	437.50	409.00	28.50	50.50	29.84	52.88
0.150	430.00	398.00	32.00	18.50	33.51	19.37
0.075	380.50	369.00	11.50	7.00	12.04	7.33
Pan	394.50	387.50	7.00	0.00	7.33	0.00

Saw Dust Concrete with Various Percentages of Metakaolin

Fig 4.3 Sieve analysis for metakaolin

Impact Test

Table 4.6 shows the result of the impact test carried out on coarse aggregate sample.

Table 4.9 impact test for coarse aggregate

Sample	Weight (g)
Weight of container W1	2994.5
Weight of container + sample W2	3560
Mass of sample passing through 2.36mm sieve (g)	112.0
AIV (%)	19.8

Abrasion Test

Table 4.7 shows the result of the abrasion test carried out on coarse aggregate sample.

ght (g)
)
5.5

Table 4.10 abrasion test for coarse aggregate

Slump Test

Table 4.1 shows the result of the slump tests for each mixed concrete batch for both cube and beam. The slump is measured in millimetres. Table 4.11 Slump test result

Batch	Slump (mm)
Nominal mix	65
Sawdust concrete	48
5% MK	34
10% MK	26
15% MK	17

The results in Table 4.1 show that the workability of the freshly mixed concrete does not fall within the mix design range (30 – 60mm). It can also be observed that the elimination of sand and using sawdust completely reduces the workability of concrete while the addition metakaolin also reduces effectively the workability of the concrete.

To achieve a more workable sawdust concrete, the water-cement ratio may need to be increased and. Fig. 4.3 gives a graphical representation of the slump test results.

Saw Dust Concrete with Various Percentages of Metakaolin

Compaction factor Test

Table 4.2 shows the results obtained during the compacting factor test on the fresh concrete

Table 4.12 Compaction Factor test result

Batch	Compaction Factor
Nominal mix	0.5
Sawdust concrete	1.1
5% MK	2.1
10% MK	2.5
15% Fibre	2.9

The result of the compaction factor test shows that the control batch has the lowest workability when compared with the other mix batches. It can be concluded that the addition of the elimination of sand and replacing with sawdust increase the workability of concrete while the addition of metakaolin in sawdust concrete also gives a significant increase in the workability of mixed concrete. Plate. 4.2 gives a graphical representation of the compaction test results.

CEDTECH International Journal of Science & Advancement in Bioconservation Volume 2, Number 3, September 2021

Fig. 4.3 Compaction factor vs. percentage replacement

XRF Analysis

The XRF analysis done on metakaolinyieled the results as shown in table 4.3, from Table 4.3 the concentration of SiO₂, Al₂O3 and Fe₂O_{3 are} 46.87%, 34.50% and 3.08% respectively. The addition of the three gives a total of 84.45% which is greater than 70%. Therefore, metakaolin is a pozzolanic material

Table 4.13 XRF Analysis test result

Lav	pie Ta ar Co	mpone	nt	Type	Concr	. Erroi	Un:	its	Mole%	Erroz	6			
1	51	.02	5552 - S	Calc	46,87	13 0.749	9 wt	. 8	55,961	D.894	8			
1	V2	:05		Calc	0.11	4 0.008	a wt	.8	0.045	0.003	1			
1	CI	203	1	Calc	0.03	2 0.004	4 wt	.8	0.010	0.002	8			
1	Mr	0	1	Calc	0.00	58 0.004	4 wt	.8	0,068	0,004	6			
1	Fe	203	20	Calc	3.0	6 0.01	7 wt.	. N	1,382	0,008	6			
1	Co	304	51	Calc	0.01	4 0.005	s wt	. 8	0,004	0.002	2			
1	N	0	21	Calc	0.00	04 0.000	2 wt	. 8	0.004	0.002				
1	C	10	9	Calc	0,03	3 0.003	2 wt		0.021	0.002	5) (-3			
I	N	203		Calc	0.01	0.003	z wt	.8	0.003	0,001	1			
I	Mc	603	1	Calc	0.00	0.003	3 wt.	. 8	0,001	0,002				
1	WC	5C	1	Calc	0.00	0.000	0 wt	- N	0.000	0.000)			
1	P2	205		Calc	0.02	0 0,15	I wt	.8	0.010	0.076	5			
1	50	3	23	Calc	0.80	08 0.058	8 wt	. 9.	0.724	0.052	÷.			
1	Ca	0		Calc	11.00	5 0.080) wt	. 8	14.154	0,102	2			
I	Mg	10	- 9	Calc	0.00	0,000) wt	. 8	0.000	0.000)			
1	K.2	:0		Calc	0.76	6 0.02	7 wt	- 8	0,583	0,021	9			
1	Ba	10		Calc	0.00	0,000	i wt	. 9	0.000	0,000)			
1	Al	203	82	Calc	34.50	1,601	l wt	ε.	24.273	1,126	2			
1	Ta	205	21	Calc	0.01	5 0.00	7 wt	÷ 8 –	0,002	0.001	2			
1	Ti	02	9	Calc	1.91	1 0.024	4 wt	۶.	1,716	0.022				
1	Zr	10	9	Calc	0,04	6 0,003	2 wt	. 8	0.041	0.002	2			
I	Ag	120		Calc	0.01	6 0.01	7 wt	. 8	0,005	0,005	5			
1	CI			Calc	0.43	5 0.023	2 wt	. ¥ .	0.860	0,044	6			
1	21	:02		Calc	0.18	87 0.004	4 wt	- 8	0,109	0,002				
1	51	0		Calc	0.03	15 0,000	2 wt	.*	0,024	0,001	·			
Eler	ment 1	able												
EIM	Code	Code	Metho	d (c	(s)	(c/s)	Meti	bod	conc.	Method	Coef	fici	ent	
0	Ka	0	None	0.00	00	0.0000	Gauss	ian	46,827	None	0.0	00	Cart.	
Ma	Ka	1	None	0.00	00	2,6787	Gauss	ian	0.000	FP	0.0	00		
Al	Ka	1	None	155	092	7,1955	Gauss	San	18,260	FP	0.0	0.0		
51	Ka	1	None	725.	478	11.5882	Gauss	ian	21,911	FP	0.0	00		
P	Ka	1	None	0.73	10	5,4563	Gauss	San	0.009	FP	0.0	00		
5	Ka	1	None	52.4	176	3,7530	Gauss	ian	0.324	FP	0.0	00		
C1	Ka	1	None	92.0	193	4,7595	Gauss	ian	0,425	FP	0.0	00		
ĸ	Ka	1	None	212	839	7,6192	Gauss	tan	0.636	FP	0.0	0.0		
Ca	Ka	- 3	None	3882	453	27 9284	Caneg	1 am	7 908	FP	0.0	0.0		
TI	Ka	1	None	1018	157	12,8724	Gauss	1 am	1.145	FP	0.0	0.0		
v	Ka	1	None	77 4	166	5 3043	Canag	ian	0.064	FP.	0.0	0.0		
Cr.	Ka	1	None	22 3	122	3 8274	Caneg	Lan	0.015	FP	0.0	00		
Mn	Ka	1	None	101	738	5,4163	Gauss	ian	0.052	FP	0.0	0.0		
Fe	Ka	1	None	5085	206	28,3020	Gauss	ian	2,151	FP	0.0	0.0		
00	Ra	1	None	28.8	0.09	10,6040	Caneg	San	0.010	FP	0.0	0.0		
Ni	Ka	1	None	8.73	17	5,4630	Gauss	ian	0.003	FP	0.0	00		
Cu	E	1	None	65.1	11	5.3228	Gauss	ian	0.019	FP	0.0	00		
Zp	Ka	1	None	144	418	6.5966	Gause	ian	0.037	FP	0.0	0.0		
Sr	Ka	1	None	118	687	6,7923	Gauss	ian	0.029	FP	0.0	00		
Zr	Ka	1	None	479	097	10.0281	Gauss	ian	0,139	FP	0.0	00		
ND	V.		None	23 3	154	5.7103	Gauss	ian	0.008	FP	0.0	00		
Mo	Ka	1	None	4.71	9	6.3466	Gause	ian	0.007	FP	0.0	00		
Ac	Ka	1	None	4 39	4	4.4646	Gauss	ian	0.015	FP	0.0	00		
Ro	T a		None	0.00	10	11 9350	Canco	tan	0.000	FP	0.0	0.0		
To	T	1	None	11	47	5.5682	Causa	ian	0.012	FP	0.0	00		
W	L	1	None	0.00	00	6.9728	Gauss	ian	0.000	FP	0.0	00		
Anal	lvsis	Conds	tions											
# T	ar Fill	ter		Thic	ik. 10	nA uA	Dete	ector		7	hick	Ate	Preset	Actual
	at	0.00		male	m2		Type	F11:	or		a/cm?		Time (a)	Timeie
1 R	h None	1		0.00	30.	0 40.0	SDD	None	2	C	.00	Air	60.0	60.0
Pro	nessir	a Con	dition											
# 1	No. E	scape	Sum	Bac)	C/R	Blank -	Blai	nk						
SI	aths I	eaks	Peaks	Type	Ratic	Ren.	File	e	5					
1	1	VAR	Vac	Dist.	Ma	No								

Concrete Density Test

The mass of all test cubes was measured, and the average unit weight (density) of each concrete batch was calculated based on the BS EN 323 (1993) code and shown in Table 4.3.

Density $(kg/m^3) = \frac{mass}{volume}$ Table 4.14 Density of concrete cubes

				volume 2, Number	3, September 20
Batch / Cub	e No.	Mass (kg)	Volume ×10 [°] (m [°])	Density (kg/m³)	Average Density (kg/m³)
	Cube 1	7.89	3.375	2337.8	
	Cube 2	8.03	3.375	2379.3	
	Cube 3	7.89	3.375	2337.8	
Nominal	Cube 4	7.75	3.375	2296.3	2353.3
	Cube 5	8.22	3.375	2435.6	
mix	Cube 6	8.13	3.375	2408.9	
	Cube 1	6.89	3.375	2041.5	
	Cube 2	6.90	3.375	2044.4	
	Cube 3	6.90	3.375	2044.4	
	Cube 4	6.80	3.375	2014.8	2056.2
Sawdust	Cube 5	7.10	3.375	2103.7	
concrete	Cube 6	7.05	3.375	2088.9	
	Cube 1	6.75	3.375	2000.0	
	Cube 2	7.19	3.375	2130.3	
	Cube 3	7.18	3.375	2127.4	
	Cube 4	7.36	3.375	2180.7	2128.4
	Cube 5	7.32	3.375	2168.9	
5% MK	Cube 6	7.30	3.375	2162.9	
	Cube 1	7.00	3.375	2263.7	
	Cube 2	6.96	3.375	2168.8	
	Cube 3	7.55	3.375	2180.7	2201 0
	Cube 4	7.59	3.375	2225.1	2204.0
10%	Cube 5	7.31	3.375	2139.2	
МК	Cube 6	7.45	3.375	2251.8	
	Cube 1	7.64	3.375	2074.0	
	Cube 2	7.32	3.375	2062.2	
	Cube 3	7.36	3.375	2237.0	2145 0
150/	Cube 4	7.51	3.375	2248.9	2105.9
15% M/	Cube 5	7.22	3.375	2165.9	
MK	Cube 6	7.60	3.375	2207.4	

CEDTECH International Journal of Science & Advancement in Bioconservation

The test results above clearly show that the density of the nominal mix batch is 2353.3kg/m³ this value is relatively close to the density of the design mix which is 2360kg/m³. It can also be seen that the 10% metakaolin in sawdust concrete batch yielded the highest density at 2204.8kg/m³, and the sawdust concrete batch gave the least density value at 2056.2kg/m³.

Fig. 4.4 Concrete average density vs. metakaolin %

Flexural Strength Test

The flexural strength of a total of 30 beam specimens as described in chapter three were tested. Two beams from each mix batch were tested after 7, 14, and 28 days of curing. The modulus of rupture (MOR) was calculated using the formula below.

Modulus of Rupture $f_{b}(N/mm^{2}) = \frac{3Pl}{2bd^{2}}$ (BS 12390-5:2009)

Where

 $P = maximum \ load$ (N) L = distance between supporting rollers (200mm)

b = width of beam (100mm)

d = depth of beam 50(mm)

The results of the flexural strength test for 7, 14, and 28 days are shown in Tables 4.4 to 4.6.

Batch / Beam N	lo.	Maximum Ioad (P) (KN)	MOR (N/mm²)	Average MOR (N/mm ²)
Nominal miv	Beam 1	13.0	3.90	2 01
	Beam 2	12.0	3.72	5.01
Sawdust	Beam 1	8.0	1.21	1 /5
Concrete	Beam 2	6.0	1.70	1.45
5% N/L	Beam 1	6.0	1.70	1 90
5 /0 IVIK	Beam 2	7.0	1.90	1.00
10% MK	Beam 1	8.0	2.45	2.49

 Table 4.15
 Flexural strength test results at 7 days

			CEDTECH Interna Adva Volume 2,	ational Journal of Science & ncement in Bioconservation Number 3, September 2021
	Beam 2	9.0	2.52	
1E0/ M/	Beam 1	7.0	1.90	1.05
1370 IVIN	Beam 2	6.0	1.70	1.95

 Table 4.16
 Flexural strength test results at 14 days

Batch / Beam No.		Maximum load (P) (KN)	MOR (N/mm²)	Average MOR (N/mm ²)
Nominal mix	Beam 1	14.0	4.60	1 18
	Beam 2	12.0	4.36	4.40
Sawdust	Beam 1	7.0	1.90	1 00
Concrete	Beam 2	7.0	1.90	1.70
5% MK	Beam 1	7.0	1.90	1 0 2
5 % WIX	Beam 2	5.0	1.95	1.75
10% MK	Beam 1	8.0	2.56	2 56
	Beam 2	8.0	2.56	2.50
15% MK	Beam 1	6.0	2.00	2.26
1370 WIK	Beam 2	9.0	2.52	2.20

 Table 4.17
 Flexural strength test results at 28 days

Batch / Beam No.		Maximum Ioad (P) (KN)	MOR (N/mm²)	Average MOR (N/mm ²)
Nominal mix	Beam 1	16.0	5.42	5 35
	Beam 2	15.0	5.29	5.55
Sawdust	Beam 1	9.0	2.56	2.54
Concrete	Beam 2	8.0	2.52	2.54
5% MK	Beam 1	9.0	2.56	2.60
5 % WIX	Beam 2	11.0	2.82	2.07
10% MK	Beam 1	12.0	3.72	2 27
	Beam 2	11.0	2.82	5.27
15% М к	Beam 1	10.0	2.75	2 70
1570 IVIN	Beam 2	11.0	2.82	2.19

From the results given in Table 4.4 to 4.6 it can be seen that the gain of flexural strength of concrete is low at the initial stages (7 days) for all batches. The flexural strength of the concrete increases with the age of the concrete

The experiment shows that the replacement of fine aggregate with sawdust to get sawdust concrete reduces the flexural strength but the addition of the metakaolin increases the flexural strength, although the strength does not increase linearly with the increase in metakaolin percentage for sawdust concrete. Though all sawdust concrete batches containing metakaolin gave lower flexural strength than the control batch, the 10% metakaolin batch yielded the highest value of flexural strength after 7, 14, and 28 days.

This results shows that the optimum metakaolin content in sawdust concrete to attain maximum flexural strength is 10%.

Fig. 4.4 is a chart showing the average flexural strength and percentage fibre relationship after 7, 14, and 28 days.

Fig. 4.4 Average MOR vs. metakaolin %

Compressive Strength Test

The compressive strength of a total of 30 concrete cubes as described in chapter three were tested. Two cubes from each mix batch were tested after 7, 14, and 28 days of curing. The compressive strength was calculated using the formula below.

Compressive strength f_{cu} (N/mm²) = $\frac{P}{A}$ (BS 1881-Part 116) where P = Maximum load applied to the specimen (N) and, A = Surface area in contact with the platens (mm^2).

Tables 4.7 to 4.9 show the results of the compressive strength tests after 7, 14 and 28 days.

A = Surface area in contact with the platens (mm^2).

Tables 4.7 to 4.9 show the results of the compressive strength tests after 7, 14 and 28 days.

 Table 4.18
 Compressive strength test results after 7 days

Batch / Cube No.		Surface Area (A) (mm²)	Maximum Ioad (P) (kN)	Compressive strength (N/mm ²)	Average Compressive strength (N/mm ²)
Nominal miv	Cube 1	22500	515.0	22.88	22.05
	Cube 2	22500	518.0	23.02	22.95
Sawdust	Cube 1	22500	105.0	4.67	1 76
concrete	Cube 2	22500	109.0	4.84	4.70
5% MK	Cube 1	22500	120.0	5.33	5 /17
570 IVIN	Cube 2	22500	126.0	5.60	5.47
10% MK	Cube 1	22500	139.0	6.17	6.26
	Cube 2	22500	143.0	6.35	0.20
15% MK	Cube 1	22500	138.0	6.13	6.02
13% IVIN	Cube 2	22500	133.0	5.91	0.02

 Table 4.19
 Compressive strength test results after 14 days

Batch / Cube No.		Surface Area (A) (mm²)	Maximum Ioad (P) (kN)	Compressive strength (N/mm²)	Average Compressive strength (N/mm ²)
Control	Cube 1	22500	530.0	23.55	22 71
Control	Cube 2	22500	537.0	23.86	23.71
Sawdust	Cube 1	22500	111.0	4.93	/ 90
concrete	Cube 2	22500	114.0	5.06	4.70
5% MK	Cube 1	22500	124.0	5.51	5 55
370 IVIK	Cube 2	22500	126.0	5.60	5.55
10% MK	Cube 1	22500	143.0	6.35	6 55
	Cube 2	22500	152.0	6.75	0.55
15% MK	Cube 1	22500	144.0	6.40	6 20
13% IVIK	Cube 2	22500	139.0	6.17	0.20

Batch / Cube No.		Surface Area (A) (mm²)	Maximum Ioad (P) (kN)	Compressive strength (N/mm ²)	Average Compressive strength (N/mm ²)
Nominal miv	Cube 1	22500	619.8	27.55	27.40
	Cube 2	22500	613.4	27.26	27.40
Sawdust	Cube 1	22500	118.0	5.24	5 22
concrete	Cube 2	22500	117.0	5.20	J.ZZ
5% MK	Cube 1	22500	129.0	5.73	5 78
570 IVIIX	Cube 2	22500	131.0	5.82	5.70
10% MK	Cube 1	22500	170.0	7.55	7 70
	Cube 2	22500	181.0	8.04	1.17
15% MV	Cube 1	22500	163.0	7.24	7 20
13% IVIN	Cube 2	22500	169.0	7.51	1.30

Table 4.20	Compressive	strength	test results	after 28	days
------------	-------------	----------	--------------	----------	------

The results of the compressive strength test given in the above tables show clearly that the addition of the metakaolin increases the compressive strength of sawdust concrete

Table 4.7 to 4.9 shows that nominal mix batches yield compressive strength value greater than sawdust concrete and the addition of metakaolin in sawdust concrete

The results show that the optimum percentage of metakaolin in sawdust concrete to yield the maximum compressive strength is 10% (by weight of cement) as it yields 7.79N/mm², a huge difference in strength compared to the control batch after 28 days.

Fig 4.5 shows a bar chart relating the average compressive strength and fibre percentage after 28 days.

CEDTECH International Journal of Science & Advancement in Bioconservation Volume 2, Number 3, September 2021

CONCLUSION AND RECOMMENDATION CONCLUSION

The effect of the replacement of cement with metakaolin in sawdust concrete as an additive was analysed in this study. The study is aimed at reducing the rate at which this by-product is being converted to solid waste material by effectively utilizing the sawdust gotten from sawing of wood in the production of concrete that can definitely be utilized in conditions where compressive strength is not a huge necessity and since sawdust can be obtained at little or no cost. The compressive and flexural strength characteristics of sawdust concrete were discussed and compared with conventional concrete. Based on the results and analysis, the following conclusions were drawn:

- 1. The workability of freshly mixed concrete reduced after sawdust was used in producing sawdust concrete and a sudden increase happened after 5% of metakaolin was used to partially replace cement and then a sudden decrease happened after 10%. This is a result of the water absorption characteristic of the sawdust which makes the mix stiffer, gives a lower slump value and affects the appearance of the concrete when it sets if not properly compacted.
- 2. The metakaolin percentage that yielded the highest density was 15% with 2204.8 kg/m³ while the 5% batch yielded 2128.4 kg/m³. The nominal mix yielded 2353.3 kg/m³ and the sawdust concrete batch yielded 2056.2 kg/m³ hence the density of the sawdust

concrete increase with an increase with an increase in metakaolin content due to the volume of voids.

- 3. The flexural strength values indicate that sawdust concrete gains high strength at the early stage. It also shows that the addition of metakaolin increases the modulus of rupture (MOR) after 7, 14 and 28 days although the MOR does not increase with increasing metakaolin content. The increase in MOR is only up to a certain metakaolin content. The 10% metakaolin batch yielded the highest MOR at 28 days with 3.27N/mm²
- 4. Addition of metakaolin in sawdust concrete increases the compressive strength of the concrete after 7, 14 and 28 days. The 10% MK batch yielded the highest compressive strength value 7.79N/mm². The compressive strength does not increase with increasing metakaolin content; the increase is only up to a certainmetakaolin content.
- 5. The optimum quantity of metakaolin for use as an additive in sawdust concrete is 10% (by weight of cement) as it yields the highest compressive and flexural strength values.

RECOMMENDATION

- 1. Research on the use of more industrial wastes in the production of construction materials and concrete composites should be encouraged to develop enhanced structural composites and aid in the control of agro-wastes.
- 2. Additives such as metakaolin should be studied further and used a lot in the construction as it is a pozzolan that has proved to be useful in improving mechanical properties of concrete.
- 3. For further researches, it is recommended that the study be done for a longer period of time to test the durability of the composites after 3 or 6 months as this will determine the suitability of the method in construction

REFERENCES

- Ajay, V., & Rajeev, C. (2012). Effect of Micro Silica on The Strength of Concrete with Ordinary Portland Cement. *Research Journal of Engineering Sciences . ISSN Sept. Res. J. Engineering Sci*, 1(3), 2278–9472.
- Al-Akhras, N. M. (2006). Durability of Metakaolin Concrete to Sulfate Attack. *Cement and Concrete Research*, *36*(9), 1727–1734.

- Awuchi, C. G. (2017). Industrial Waste Management : Brief Survey and Advice to Cottage, Small and Medium Scale Industries in Uganda Industrial Waste Management : Brief Survey and Advice to Cottage, Small and Medium Scale Industries in Uganda Department of Biological and Envi. International Journal of Advanced Academic Research | Sciences, Technology & Engineering, 3(1), 26–30.
- Brew, D. R. M., & Mackenzie, K. J. D. (2007). Geopolymer Synthesis using Silica Fume and Sodium Aluminate. *Journal of Materials Science*, *42*(11), 3990–3993.

British Standards Institution. *Method of normal Curing of Test Specimens (20° C Method)*, BS 1881-111:1983.

British Standards Institution. *Method for Determination of Compressive Strength of Concrete Cubes*, BS 1881-Part 116.

British Standards Institution. Testing Hardened Concrete. *Flexural Strength of Test Specimens*, BS EN 12390-5:2009.

British Standards Institution. *Method for Determination of Flexural Strength of Concrete Beams*, BS 1881-Part 118.

British Standards Institution. *Specification for Aggregate from Natural Source for Concrete,* BS 882 (1992)

- Cheremisinoff, N. P. (2003). *Handbook of Solid Waste Management and Waste Minimization Technologies*. Butterworth-Heinemann.
- Davidovits, J. (2008). Geopolymer Chemistry and Applications.
- Dhinakaran, G., Thilgavathi, S., & Venkataramana, J. (2012). Compressive Strength and Chloride Resistance of Metakaolin Concrete. *KSCE Journal of Civil Engineering*, *16*(7), 1209–1217.
- Dilip Kumar, Singh, S., Kumar, N., & Gupta, A. (2014). Low Cost Construction Material for Concrete as Sawdust. *Global Journal of Researches in Engineering*, 14(4), 1–5.
- Ding, J. T., & Li, Z. (2002). Effects of Metakaolin and Silica Fume on Properties of Concrete. *ACI Materials Journal*, *99*(4), 393–398.

Gambhir, M. L. (2013). *Concrete Technology: Theory and Practice*. Tata McGraw-Hill Education.

- Gruiz, K., & Klebercz, O. (2014). Environmental Risk of Waste and its Management. Engineering Tools for Environmental Risk Management: 1. Environmental Deterioration and Contamination-Problems and their Management, 1, 135.
- Hashim, H. B. I. N. (2008). the Effect of Palm Oil Fiber on Concrete Properties Universiti Teknologi Malaysia Borang Pengesahan Status Tesis ♦.
- Hu, J. (2014). The Implementation of Waste Sawdust in concrete. Advanced Materials Research, 941–944(December), 849–853. 9

Jayant Damodar Supe, & Dr. M.K.Gupta. (2014, November). Flexural Strength – A Measure to Control Quality of Rigid Concrete Pavements. *International Journal of Scientific & Engineering Research*, *5*(11), 46-57.

- Joy, A. M., Jolly, A. K., Raju, A. M., & Joseph, B. E. (2016). Partial Replacement of Fine Aggregate With Sawdust for Concrete. *International Journal For Technological Research In Engineering*, *3*(9), 2439–2443.
- Langer, W. (2016). Sustainability of Aggregates in Construction. In *Sustainability of Construction Materials* (Second Edi).

Mallick, P. K. (2007). *Fiber-Reinforced composites: Materials, Manufacturing, and design.* CRC press.

- Mohod, M. V. (2015). Performance of Polypropylene Fibre Reinforced Concrete. *IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE)*, *12*(1), 28–36.
- Murali, G., & Sruthee, P. (2012). Experimental Study of Concrete with metakaolin as Partial Replacement of cement. *Int. J. Emerging Trends Eng. Dev*, *4*(2), 344-348.
- Narmatha, M., & Felixkala, D. T. (2016). Meta kaolin The Best Material for Replacement of Cement in Concrete. *IOSR Journal of Mechanical and Civil Engineering*, *13*(04), 66–71.

Nataraja P.T. (2014). *Properties of Fresh and Hardened Concrete.* Vienna.

- Nikhila, C. H. J., & Kumar, J. D. C. (2015). Partial Replacement of Cement With Metakaolin in High Strength Concrete. *International Journal of Engineering Research and Science & Technology*, 4(4), 336–349.
- Ogunwusi, A. A. (2014). Wood Waste Generation in the Forest Industry in Nigeria and Prospects for Its Industrial Utilization. *Civil and Environmental Research*, *6*(9), 62–69. Retrieved from http://www.iiste.org/Journals/index.php/CER/article/view/15450
- Oikonomou, N. D. (2005). Recycled Concrete Aggregates. *Cement and Concrete Composites*, 27(2), 315–318. https://doi.org/10.1016/j.cemconcomp.2004.02.020
- Oyedepo, O. J., Oluwajana, S. D., & Akande, S. P. (2014). Investigation of Properties of Concrete using Sawdust as Partial Replacement for sand. *Civil and Environmental Research*, *6*(2), 35–42.
- Patel, M., Patel, K., Patel, A., Prajapati, R., & Koshti, U. (2010). *Study of Sawdust Concrete Properties as Construction Materials. IV*(I).
- S Shah, D., Shah, M. P., & Pitroda, J. (2014). Chemical Admixtures: a Major Role in Modern Concrete Materials and Technologies. *National Conference on: "Trends and Challenges of Civil Engineering in Today's Transforming World,"* (March 2014).
- Sabir, B., Wild, S., & Bai, J. (2001). Metakaolin and Calcined clays as Pozzolans for Concrete: A review. *Cement and Concrete Composites*, *23*(6), 441–454.
- Sai, MInk., & Sairam KumarN, V. (2014). A Review on Use of Metakaolin in Cement Mortar and Concrete. International Journal of Innovative Research in Science, Engineering and Technology (An ISO Certified Organization), 3297(7), 14697–14701. Retrieved from www.ijirset.com
- Salamak, M., Weseli, J., & Radziecki, A. (2007). Monitoring of highway bridges in areas under mining exploitation influence. *Bridge Design*,

Construction and Maintenance - Proceedings of the Two-Day International Conference Organised by the Institution of Civil Engineers, ICE, 469–478. https://doi.org/10.1680/bdcam.35935.0051

- Tantawi, H. (2015). Introduction to Concrete Technology. *Department* of Civil Engineering, Fahad Bin Sultan University, (April), 143–188. https://doi.org/10.13140/RG.2.1.3219.9201
- Torrans, P. H., & Ivey, D. L. (1968). *Review of Literature on Air-Entrained Concrete*. 13. Retrieved from http://tti.tamu.edu/documents/103-1.pdf

Wikipedia, F. (2015). Plasticizer. 1–7.

Yunusa M.S. (2011). Causes of Failure in Compsite Structural Members. *Structural Engineering*, 187-194.